Exercise-mediated changes in conduit artery wall thickness in humans: role of shear stress.
نویسندگان
چکیده
Episodic increases in shear stress have been proposed as a mechanism that induces training-induced adaptation in arterial wall remodeling in humans. To address this hypothesis in humans, we examined bilateral brachial artery wall thickness using high-resolution ultrasound in healthy men across an 8-wk period of bilateral handgrip training. Unilaterally, shear rate was attenuated by cuff inflation around the forearm to 60 mmHg. Grip strength, forearm volume, and girth improved similarly between the limbs. Acute bouts of handgrip exercise increased shear rate (P < 0.005) in the noncuffed limb, whereas cuff inflation successfully decreased exercise-induced increases in shear. Brachial blood pressure responses similarly increased during exercise in both the cuffed and noncuffed limbs. Handgrip training had no effect on baseline brachial artery diameter, blood flow, or shear rate but significantly decreased brachial artery wall thickness after 6 and 8 wk (ANOVA, P < 0.001) and wall-to-lumen ratio after week 8 (ANOVA, P = 0.005). The magnitude of decrease in brachial artery wall thickness and wall-to-lumen ratio after exercise training was similar in the noncuffed and cuffed arms. These results suggest that exercise-induced changes in shear rate are not obligatory for arterial wall remodeling during a period of 8 wk of exercise training in healthy humans.
منابع مشابه
Impact of bed rest on conduit artery remodeling: effect of exercise countermeasures.
Physical inactivity is a potent stimulus for vascular remodeling, leading to a marked decrease in conduit artery diameter. However, little is known about the impact of physical inactivity on artery wall thickness or wall:lumen ratio or the potential of exercise countermeasures to modify artery wall thickness. The purpose of the study was to examine the impact of 60 days of bed rest, with or wit...
متن کاملCrucial role of NO and endothelium-derived hyperpolarizing factor in human sustained conduit artery flow-mediated dilatation.
Whether NO is involved or not in sustained conduit artery flow-mediated dilatation in humans remains unclear. Moreover, the role of endothelium-derived hyperpolarizing factor (EDHF), synthesized by cytochrome epoxygenases and acting through calcium-activated potassium channels, and its relationship with NO during flow-mediated dilatation have never been investigated previously. In 12 healthy su...
متن کاملShear stress mediates endothelial adaptations to exercise training in humans.
Although episodic changes in shear stress have been proposed as the mechanism responsible for the effects of exercise training on the vasculature, this hypothesis has not been directly addressed in humans. We examined brachial artery flow-mediated dilation, an index of NO-mediated endothelial function, in healthy men in response to an acute bout of handgrip exercise and across an 8-week period ...
متن کاملBlood Vessels Shear Stress Mediates Endothelial Adaptations to Exercise Training in Humans
Although episodic changes in shear stress have been proposed as the mechanism responsible for the effects of exercise training on the vasculature, this hypothesis has not been directly addressed in humans. We examined brachial artery flow-mediated dilation, an index of NO-mediated endothelial function, in healthy men in response to an acute bout of handgrip exercise and across an 8-week period ...
متن کاملBlood Vessels Impact of Bed Rest on Conduit Artery Remodeling Effect of Exercise Countermeasures
Physical inactivity is a potent stimulus for vascular remodeling, leading to a marked decrease in conduit artery diameter. However, little is known about the impact of physical inactivity on artery wall thickness or wall:lumen ratio or the potential of exercise countermeasures to modify artery wall thickness. The purpose of the study was to examine the impact of 60 days of bed rest, with or wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 301 1 شماره
صفحات -
تاریخ انتشار 2011